子图是
图论的基本概念之一,指节点集和边集分别是某一图的节点集的
子集和边集的子集的图。若这个节点子集或边子集是
真子集,则称这个子图为真子图;若图G的每一个节点也是它的子图H的节点,则称H是G的支撑子图。设S是V(G)的子集,以S为节点集,以G的所有那些两端点都在S内的边组成边集,所得到的G的子图称为S在G中的导出子图,或更确切地,节点导出子图。设B是E(G)的子集,由G的所有与B内至少有一条边关联的节点组成节点集,以B为边集,所得到的G的子图称为B在G中的边导出子图;对于某种性质P,若一个图的具有P的子图不是任何具有P的子图的真子图,则称它为具有P的极大子图,在所有极大子图中,边数最多的那个称为最大子图。