首页 [切点]的解释
在几何学中,在给定点处的平面曲线的 切线是在该点处“刚好接触”曲线的直线。 莱布尼兹将其定义为通过曲线上一对无限封闭的点的线。更准确地说,如果直线通过曲线上的点(c,f(c)),则直线被称为在曲线上的点x = c处的曲线y = f(x)的切线,并且具有斜率f'(c),其中f'是f的导数。类似的定义适用于n维欧几里德空间中的空间曲线。
通过切线和曲线相交的点,称为切点,切线与曲线“以相同的方向”,因此切点是曲线上的最佳直线近似点。

© CopyRight 212-2021, www.9aiVIP.com , Inc.All Rights Reserved. 版权所有